(X^2-32)/(x+8)=0

Simple and best practice solution for (X^2-32)/(x+8)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X^2-32)/(x+8)=0 equation:



(X^2-32)/(X+8)=0
Domain of the equation: (X+8)!=0
We move all terms containing X to the left, all other terms to the right
X!=-8
X∈R
We multiply all the terms by the denominator
(X^2-32)=0
We get rid of parentheses
X^2-32=0
a = 1; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·1·(-32)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*1}=\frac{0-8\sqrt{2}}{2} =-\frac{8\sqrt{2}}{2} =-4\sqrt{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*1}=\frac{0+8\sqrt{2}}{2} =\frac{8\sqrt{2}}{2} =4\sqrt{2} $

See similar equations:

| (z+5)/1.2=3.6 | | (20x+x)+x=66 | | 6(2)-y=4 | | 2(x+8)-8=8 | | X-5(-3/5x+8)=6 | | -3(2x-5)=-6×+15 | | 6=-9/2u | | x-32=4x+24-3x-56 | | 7(4+x)=6(x-4) | | 30=10-4b | | 20p÷3=40 | | a÷5+1=16 | | 3(a-5)=3a+15) | | 3(y-2)-2=4(y-4) | | 11=15h+16 | | 20x^2+6x-10=0 | | 7/8y+1/7(y-8)=(y+1)/3 | | √3x+1=4 | | (x-2)^(2/5)=4 | | 3y+44=122 | | 50-3x=20+12x | | 5.1y-4.1y-0.4=5.6+6.4 | | -2|3a-2|=6 | | 15t(t+2)=11t-6 | | 288m^2-200=0 | | y^2=16^(-1÷2)×27^(2÷3) | | |x−4|=−10 | | 4=0.4x-0.6x-2 | | 30-12x=4.9x^2 | | 4+3=(12x-5) | | (14400)+(50^2)=x | | (14400+50^2)=x |

Equations solver categories